seemps.cgs.cgs#
- seemps.cgs.cgs(A, b, guess=None, maxiter=100, strategy=<seemps.state.core.Strategy object>, tolerance=np.float64(2.220446049250313e-16), callback=None)[source]#
Approximate solution of \(A \psi = b\).
Given the
MPOA and theMPSb, use the conjugate gradient method to estimate another MPS that solves the linear system of equations \(A \psi = b\).- Parameters:
- A
MPO|MPOList|MPOSum Matrix product state that will be inverted
- b
MPS|MPSSum Right-hand side of the equation
- maxiter
int,default= 100 Maximum number of iterations
- strategy
Strategy,default=DEFAULT_STRATEGY Truncation strategy for MPS and MPO operations
- tolerance
float,default=DEFAULT_TOLERANCE Error tolerance for the algorithm.
- A