.. currentmodule:: seemps .. _analysis_loading: **************** Function Loading **************** The SeeMPS library provides several methods to load univariate and multivariate functions in MPS and MPO structures. In the following, the most important are listed. Tensorized operations --------------------- These methods are useful to construct MPS corresponding to domain discretizations, and compose them using tensor products and sums to construct multivariate domains. .. autosummary:: :toctree: generated/ ~seemps.analysis.mesh.RegularInterval ~seemps.analysis.mesh.ChebyshevInterval ~seemps.analysis.factories.mps_interval ~seemps.analysis.factories.mps_tensor_product ~seemps.analysis.factories.mps_tensor_sum Tensor cross-interpolation (TT-Cross) ------------------------------------- These methods are useful to compose MPS or MPO representations of black-box functions using tensor-train cross-interpolation (TT-Cross). See :doc:`algorithms/tt-cross` .. autosummary:: :toctree: generated/ ~seemps.analysis.cross.black_box.BlackBoxLoadMPS ~seemps.analysis.cross.black_box.BlackBoxLoadTT ~seemps.analysis.cross.black_box.BlackBoxLoadMPO ~seemps.analysis.cross.black_box.BlackBoxComposeMPS ~seemps.analysis.cross.cross_maxvol ~seemps.analysis.cross.cross_dmrg ~seemps.analysis.cross.cross_greedy Chebyshev expansions -------------------- These methods are useful to compose univariate function on generic initial MPS or MPO and compute MPS approximations of functions. See :doc:`algorithms/chebyshev`. .. autosummary:: :toctree: generated/ ~seemps.analysis.chebyshev.cheb2mps ~seemps.analysis.chebyshev.cheb2mpo ~seemps.analysis.chebyshev.interpolation_coefficients ~seemps.analysis.chebyshev.projection_coefficients ~seemps.analysis.chebyshev.estimate_order Multiscale interpolative constructions -------------------------------------- These methods are useful to construct polynomial interpolants of univariate functions in MPS using the Lagrange interpolation framework. See :doc:`algorithms/lagrange`. .. autosummary:: :toctree: generated/ ~seemps.analysis.lagrange.lagrange_basic ~seemps.analysis.lagrange.lagrange_rank_revealing ~seemps.analysis.lagrange.lagrange_local_rank_revealing Generic polynomial constructions -------------------------------- These methods are useful to construct generic polynomials in the monomial basis from a collection of coefficients. .. autosummary:: :toctree: generated/ ~seemps.analysis.polynomials.mps_from_polynomial